

Surveying with Remote Piloted Aircraft Systems (RPAS)

System Capability & Preliminary Results Overview

Doc ver.1.0 : 09 November 2016

Table of Contents

LIS	T OF	FIGURES	. I
1	PRO	OJECT OVERVIEW	1
2	RP/	A SYSTEM OVERVIEW	1
3	SYS	STEM IMPLEMENTATION – EXAMPLE, HORIZONTAL SURVEY GRIDS	3
	3.1	Flight Planning	
	3.2	FLIGHT PATH VALIDATION	-
	3.3	Measurement Data Validation	7
4	PRO	OCESSING DELIVERABLES	9
	4.1	INTERMEDIATE WORKFLOW PROCESSES	
	4.2	Deliverables1	.2

Version	Division		Document	Date	Table of
1.0	Research Development	&	Surveying with RPAs	2016-11-09	Contents

List of Figures

Figure 1: Current Y-6 multirotor frame with all interfaced hardware
Figure 2: Relationship between flight altitude (m), image overlap (%) and flight time (min)
Figure 3: Relationship between area covered (hectare m^2), flight altitude (m) and flight speed (m/s). 4
Figure 4: Relationship between terrain resolution (cm/pxl) and altitude (m) – camera specific
Figure 5: Screenshot of automatic flight plan generation in software tool
Figure 6: Top-view display of implemented single-grid flight, in Google Earth
Figure 7: Slanted side-view display of implemented single-grid flight, in Google Earth
Figure 8: Flight and measurement data (currently geo-referenced images) displayed in Google Earth
environment by clicking on respective objects in projected flight path7
Figure 9: Identification of image overlapping detected in dataset
Figure 10: Example of number of matching keypoint / tie-points identified between images in dataset8
Figure 11: Relative geo-referencing of images, based on number of keypoint matches between
neighbouring images in dataset, also showing image placement uncertainty with green circles
Figure 12: Example, absolute geo-referencing and scaling of matching data between images via RTK-
based ground control points
Figure 13: Project creation with different datasets
Figure 14: Point cloud generation for terrains predominantly with grid-based datasets (top) vs. Point-
of-interest (POI) datasets for model rendering (bottom)
Figure 15: Absolute geo-referencing and scaling of reconstructed terrain / model
Figure 16: Fully reconstructed terrain / model with overlaid image context
Figure 17: Point cloud filtering and sanitation process to improve quality of more detailed area 11
Figure 18: Geo-referenced orhtomosaic map from of aerial image dataset (example: mining pit) 12
Figure 19: Digital elevation map (DEM), from reconstructed 3D terrain (example: mining pit) 13
Figure 20: Contour line map, created from reconstructed 3D terrain (example: mining pit)
Figure 21: Scaled 3D point cloud reconstruction from surveyed area (example: mining pit)
Figure 22: Scaled, fully constructed, 3D terrain of surveyed area (example: mining pit) 14
Figure 23: Scaled, fully constructed, 3D terrain of surveyed area, with identified reference location
markers (example: golf course)
Figure 24: Scaled 3D reconstruction of more detailed area (example: building)
Figure 25: Dimension and volume calculations based on scaled reconstructed 3D terrain

Version	Division		Document	Date	
1.0	Research Development	&	Surveying with RPAs	2016-11-09	i

1 **Project Overview**

The use of aerial photogrammetry for:

- Scaled 3D reconstruction of terrains and buildings
- Extracted volume- and distance calculations from reconstructed terrains
- Aerial terrain maps (Orthomosaic)
- Contour line maps
- Digital elevation maps (DEMs)
- Geo-referenced aerial imagery (current-> RGB, future-> NIR, IR, multi-spectral)

2 RPA System Overview

System development has been undertaken for photogrammetry purposes such as 3D object reconstruction and high accuracy terrain aerial surveying.

Note: The Aircraft referenced for this report for illustrative purposes may be interchanged to suite application endurance requirements.

Preliminary system details:

Y6 – multirotor RPA frame	Increased stability					
 Rated 2kg lift / motor 15" rotary props 						
12 – 15 min flight time / battery set	2 x 8000 mAh LiPo					
• Based on hover tests & preliminary grid flight tests						
2-5 cm positioning accuracy (X,Y,Z)	RTK GPS Positioning					
 <= 10Hz raw position calculation r > 10Hz positioning resolution via i Position accuracy calculation via R 	nterpolation & IMU integration					

Version	Division		Document	Date	Page 1 of
1.0	Research Development	&	Surveying with RPAs	2016-11-09	Page 1 of 15

RF shielding		Increased RFI ruggedizing
o Shie	elding tape	
o Ferr	ite cores & common mode cho	kes
o Alte	ered wiring schemes	
Flight path generat	ion & auto flights	Auto-pilot
o Aut	omated Grid, POI, spiral flight	path generation
• Add	litional custom flight path gene	ration & import capability
o Nav	igation via EKF (extended Kal	man Filter) GPS & IMU data integration
o Exte	ended system and navigation da	ata logging and representation capability
Camera stabilisatio	on & auto control	Gimbal & stabilisation controller
o PID	calibrated stabilisation via con	troller board
• Inte	gration and control from auto-p	bilot
0 Stat	ic and follow-me (from initial l	ock point) functionality
Aerial imaging spec	cs	Camera sensor
• Sen	sor Type: CM	10S
o Sen	sor Manufacturer: Son	ny
o Effe	ective Megapixels: 20.	1
o Sen	sor Format: AP	S-C
o Sen	sor size: 357	7.28 mm2 (23.20mm x 15.40mm)
o App	broximate Pixel Pitch: 4.2	5 micron
Auto image trigger	ing and geo-ref	Geo-tagging or post-processing
o Ima	ge triggering via flight plan wa	ypoints and distance limits
o In-f	light or post-flight geo-reference	ing dependent on requirements
Long-range wireles	s telemetry links	Duel wireless links
o Ant	enna diversity & dual polarizati	ion
o 20d	B low-noise amplifier & FEC (forward error correction)

Version	Division		Document	Date	Page 2 of
1.0	Research Development	&	Surveying with RPAs	2016-11-09	15

Figure 1: Current Y-6 multirotor frame with all interfaced hardware

3 System Implementation – Example, Horizontal Survey Grids

3.1 Flight Planning

Flight path planning is a relationship between the following:

- Image resolution -> ground sampling distance (GSD), cm/pxl
- Data quantity -> image overlap (side & frontal overlap), %
- Flight altitude -> terrain resolution <-> flight time
- Flight speed -> flight time <-> Cam triggering & geo-coding speed
- Area coverage -> flight altitude <-> flight speed

Version	Division		Document	Date	Page 2 of
1.0	Research Development	&	Surveying with RPAs	2016-11-09	Page 3 of 15

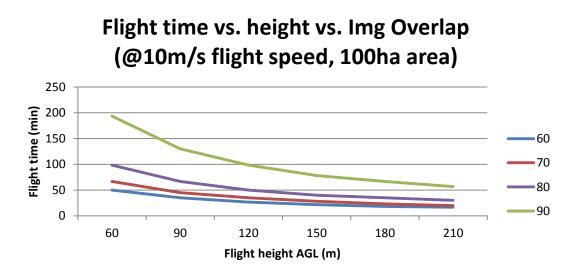


Figure 2: Relationship between flight altitude (m), image overlap (%) and flight time (min)

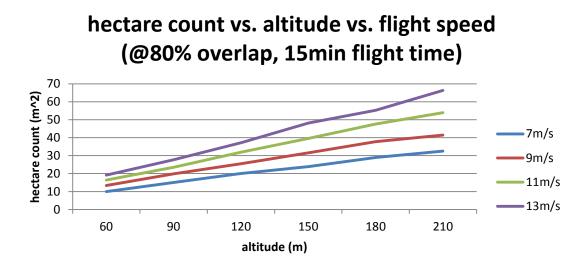


Figure 3: Relationship between area covered (hectare m^2), flight altitude (m) and flight speed (m/s)

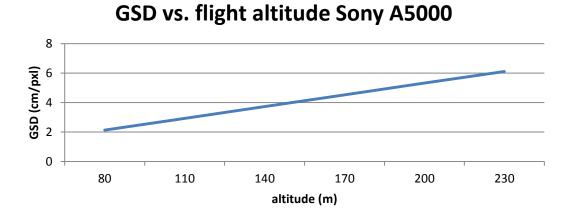


Figure 4: Relationship between terrain resolution (cm/pxl) and altitude (m) – camera specific

Version	Division		Document	Date	Page 4 of
1.0	Research Development	&	Surveying with RPAs	2016-11-09	Page 4 of 15

Figure 5: Screenshot of automatic flight plan generation in software tool

3.2 Flight Path Validation

Capability to display combination of system- and flight parameters from captured log files. Current telemetry data that is of importance:

- Attitude: RPA orientation specifics in terms of roll, pitch and yaw.
- Baro altitude: Altitude data from barometer sensor data.
- Global positioning: RPA positioning specifics based on EKF integrated GPS and IMU data.
- GPS raw: RPA positioning specifics based on RTK GPS data inputs alone.
- Movement: RPA movement speeds (air- & ground speed) and climb rates.
- Mission data: Identification of respective flight plan waypoints in log files.
- Auto-pilot parameters: Identification of all auto-pilot settings / parameters in log file.
- Radio status: Indicated signal strength, noise and transmission loss levels of wireless links.
- Terrain report: Terrain heights returned from referencing mapping data.
- **Camera trigger:** Specification of camera triggering commands.
- System status: Auto-pilot and battery status readings via system control sensors.

	Version	Division		Document	Date	Page 5 of
ſ	1.0	Research Development	&	Surveying with RPAs	2016-11-09	Page 5 of 15

Developed interactive interface to display flight path logs and measurement data (currently images) in Google Earth environment:

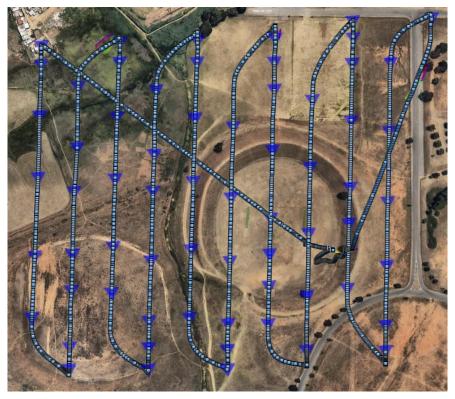


Figure 6: Top-view display of implemented single-grid flight, in Google Earth.

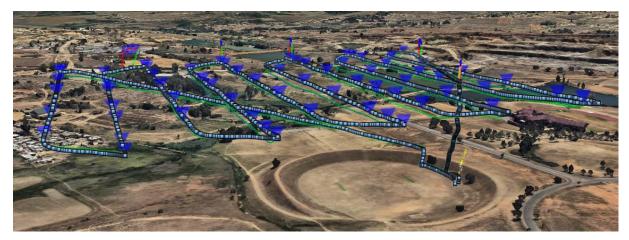


Figure 7: Slanted side-view display of implemented single-grid flight, in Google Earth

Version	Division		Document	Date	Page 6 of
1.0	Research Development	&	Surveying with RPAs	2016-11-09	Page 6 of 15

Figure 8: Flight and measurement data (currently geo-referenced images) displayed in Google Earth environment by clicking on respective objects in projected flight path.

3.3 Measurement Data Validation

The quality of the measurement data needs to be validated for result generation purposes. For smallarea surveying and 3D terrain / object reconstruction these processes include the following:

- Validation of image overlap.
- Identification of average number of keypoints detected between images.
- Relative geo-referencing / repositioning of images via identified keypoints between images.
- Absolute geo-referencing and scaling of image dataset according to ground control points.

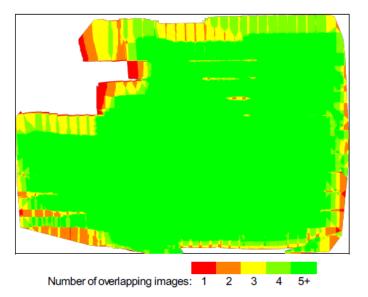
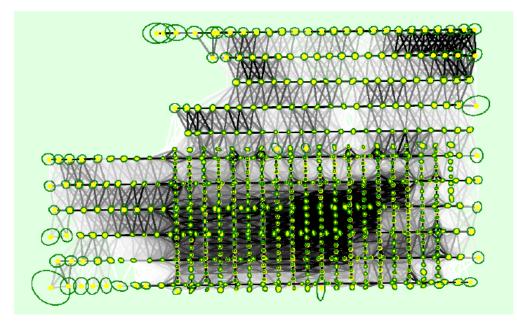



Figure 9: Identification of image overlapping detected in dataset

Version	Division		Document	Date	Page 7 of
1.0	Research Development	&	Surveying with RPAs	2016-11-09	Page 7 of 15

	Number of 2D Keypoints per Image	Number of Matched 2D Keypoints per Image
Median	35751	11754
Min	20089	333
Max	54981	30486
Mean	36350	11973

Figure 10: Example of number of matching keypoint / tie-points identified between images in dataset

Figure 11: Relative geo-referencing of images, based on number of keypoint matches between neighbouring images in dataset, also showing image placement uncertainty with green circles.

GCP Name	Accuracy XY/Z [m]	Error X[m]	Error Y[m]	Error Z [m]	Projection Error [pixel]	Verified/Marked
P4_final (3D)	0.020/ 0.020	-0.042	0.004	-0.053	1.988	16/16
P1_final (3D)	0.020/ 0.020	0.015	-0.029	-0.028	0.694	16/16
P6_final (3D)	0.020/ 0.020	0.021	-0.012	-0.004	1.322	9/9
P8_final (3D)	0.020/ 0.020	0.015	0.031	0.015	1.017	22/22
P9_final (3D)	0.020/ 0.020	-0.002	-0.002	0.025	0.866	22/22
P10_final (3D)	0.020/ 0.020	-0.011	-0.060	0.075	0.700	28/28
P7_final (3D)	0.020/ 0.020	-0.003	0.052	0.004	1.072	22/22
Mean [m]		-0.000835	-0.002123	0.004740		
Sigma [m]		0.019907	0.034248	0.037609		
RMS Error [m]		0.019924	0.034314	0.037907		

Figure 12: Example, absolute geo-referencing and scaling of matching data between images via RTKbased ground control points.

Version	Division		Document	Date	Page 8 of
1.0	Research Development	&	Surveying with RPAs	2016-11-09	Page 8 of 15

4 Processing Deliverables

Deliverables are currently based on the use of an RGB camera. Deliverables may be diversified to other applications, for example agriculture, powerline surveys, high-accuracy model reconstruction by use of additional equipment.

4.1 Intermediate Workflow Processes

Scaled terrain / model reconstruction can be broken up into a number of processes to achieve a final model for surveying purposes. It is graphically displayed by the following figures.

• Import datasets and terrain ground control points (GCPs)

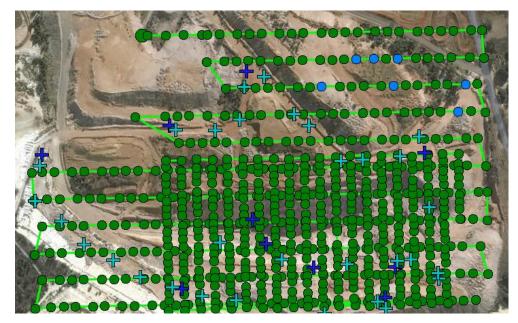
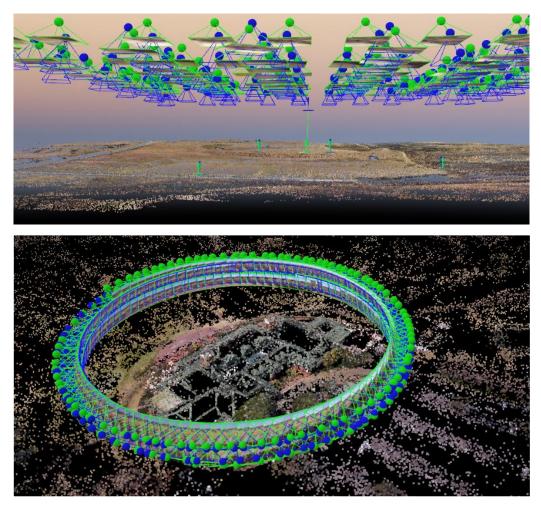



Figure 13: Project creation with different datasets

Version	Division		Document	Date	Page 0 of
1.0	Research Development	&	Surveying with RPAs	2016-11-09	Page 9 of 15

 Matching points determined between images to produce a sparse 3D terrain / model representation (point cloud)

Figure 14: Point cloud generation for terrains predominantly with grid-based datasets (top) vs. Pointof-interest (POI) datasets for model rendering (bottom).

• Absolut geo-referencing and scaling of point cloud, with addition of matched pixel groupings.

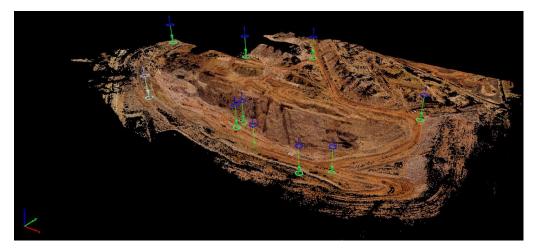


Figure 15: Absolute geo-referencing and scaling of reconstructed terrain / model.

Version	Division		Document	Date	Page 10 of
1.0	Research Development	&	Surveying with RPAs	2016-11-09	15

• Point cloud data are connected to form solid terrains / models (meshing), with addition to image context over the meshed terrain / model.

Figure 16: Fully reconstructed terrain / model with overlaid image context.

• If there are very complex areas in the terrain / model, especially very detailed small areas, the models need to go through a final "sanitation" process. (A lot of the time this also depends on which measurement- and image processing techniques are implemented)

Figure 17: Point cloud filtering and sanitation process to improve quality of more detailed area.

Version	Division		Document	Date	Page 11 of
1.0	Research Development	&	Surveying with RPAs	2016-11-09	Page 11 of 15

4.2 Deliverables

There is a set of deliverables available from current photogrammetry processes with RGB cameras (with purpose to extend in future with additional camera types and point cloud rendering equipment).

- Geo-referenced orthomosaic maps
- Geo-referenced digital elevation maps
- Contour line maps
- 3D exportable point clouds (for modelling and image processing software tools)
- 3D exportable meshed models (for modelling and terrain analysis software tools)
- Terrain dimension and volume calculations

Figure 18: Geo-referenced orhtomosaic map from of aerial image dataset (example: mining pit)

Version	Division		Document	Date	Page 12 of
1.0	Research Development	&	Surveying with RPAs	2016-11-09	15 rage 12 01

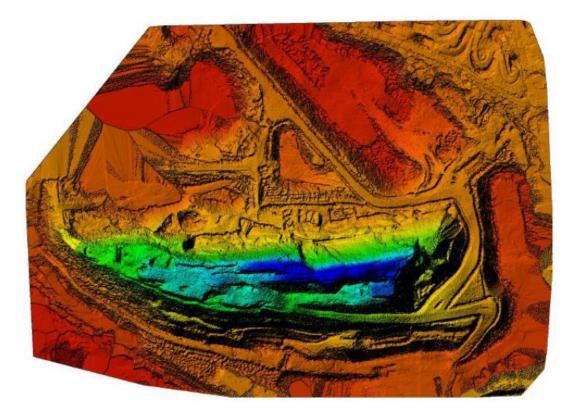


Figure 19: Digital elevation map (DEM), from reconstructed 3D terrain (example: mining pit)

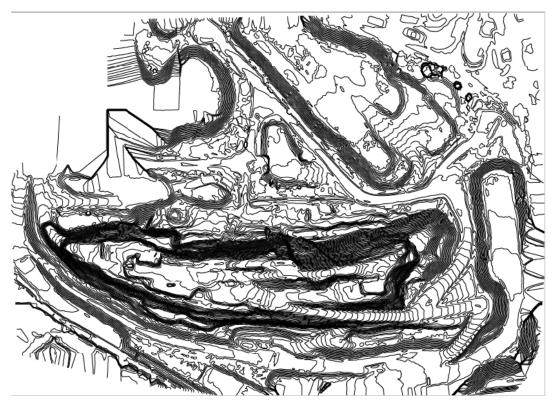


Figure 20: Contour line map, created from reconstructed 3D terrain (example: mining pit)

Version	Division		Document	Date	Page 13 of
1.0	Research Development	&	Surveying with RPAs	2016-11-09	15 15

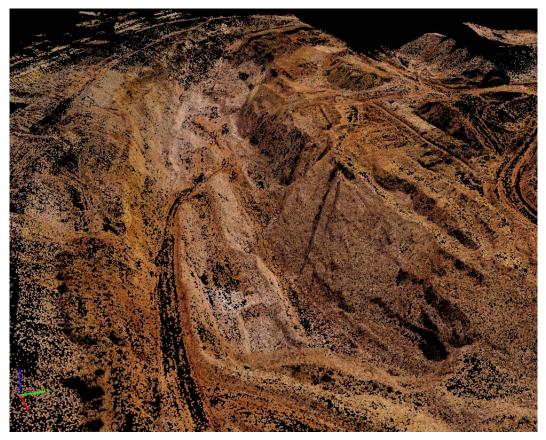


Figure 21: Scaled 3D point cloud reconstruction from surveyed area (example: mining pit)

Figure 22: Scaled, fully constructed, 3D terrain of surveyed area (example: mining pit)

Version	Division		Document	Date	Page 14 of
1.0	Research Development	&	Surveying with RPAs	2016-11-09	15

Figure 23: Scaled, fully constructed, 3D terrain of surveyed area, with identified reference location markers (example: golf course)

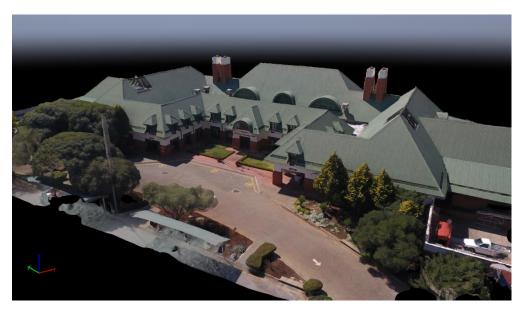


Figure 24: Scaled 3D reconstruction of more detailed area (example: building)

1	. ARTA	Berm volume	2	
1.44	111	Terrain 3D Length [m]:	152.37	error n/a
	and Bar	Projected 2D Length [m]:	152.24	error n/a
7.6	as a state of the second	Enclosed 3D Area [m ²]:	133 <mark>4.</mark> 61	error n/a
in.	The search of th	Projected 2D area [m ²]:	1331.38	error n/a
	tigs/	Terrain 3D Area [m ²]:	1777.31	error n/a
•		Cut Volume [m³]:	5373,36	± 68.20
	B. S. Standard	Fill Volume [m ³]:	-0.04	±0.12
		Total Volume [m ³]:	5373.32	± 68.31

Figure 25: Dimension and volume calculations based on scaled reconstructed 3D terrain

Version	Division		Document	Date	Page 15 of
1.0	Research Development	&	Surveying with RPAs	2016-11-09	15 15